Some Midterm 2 Review

Questions

Question 1. Evaluate the limit if it exists:

$$
\lim _{(x, y) \rightarrow(0,0)} \frac{x^{3}}{x^{4}+y^{4}}
$$

Question 2. Suppose $f(x, y)$ is a differentiable function and $g(u, v)=f\left(e^{u}+\cos v, e^{u}+\sin v\right)$. Use the values below to calculate $g_{u}(0,0)$ and $g_{v}(0,0)$.

$$
\begin{array}{llll}
f(0,0)=3 & g(0,0)=6 & f_{x}(0,0)=4 & f_{y}(0,0)=8 \\
f(2,1)=6 & g(2,1)=3 & f_{x}(2,1)=2 & f_{y}(2,1)=5
\end{array}
$$

Question 3. Let $f(x, y)=\sqrt{x y}$.
(a) Compute the gradient of f.
(b) Find the equation of the tangent plane to the graph $z=f(x, y)$ when $(x, y)=(2,8)$.
(c) Find the directional derivative of $f(x, y)$ at $P(2,8)$ in the direction towards the point $Q(5,4)$.

Question 4. Find and classify the critical points of the function

$$
f(x, y)=\sin x \sin y
$$

Question 5. Find and classify the critical points of the function

$$
f(x, y)=x^{2}-4 x-y^{4}
$$

Question 6. Let x, y, z denote the side lengths of a triangle. Heron's formula says that the area of the triangle is

$$
A=\sqrt{s(s-x)(s-y)(s-z)}
$$

where s is the semiperimeter $s=\frac{1}{2}(x+y+z)$.
Show that if s is fixed, A is maximized when $x=y=z$ (meaning that the triangle is equilateral).
Question 7. Find the absolute maxima and minima of the function $f(x, y)=x y^{2}$ on the region $x \geq 0, y \geq 0, x^{2}+y^{2} \leq 3$.

Below are brief answers to the worksheet exercises. If you would like a more detailed solution, feel free to ask me in person. (Do let me know if you catch any mistakes!)

Answers to questions

Question 1. Along the x-axis we get

$$
\lim _{x \rightarrow 0} \frac{1}{x}
$$

which evidently doesn't exist. So the original limit doesn't exist either.
Question 2. Let $x=e^{u}+\cos v$ and $y=e^{u}+\sin v$. The chain rule says

$$
g_{u}(u, v)=f_{x}(x, y) \frac{\partial x}{\partial u}+f_{y}(x, y) \frac{\partial y}{\partial u}
$$

and similarly

$$
g_{v}(u, v)=f_{x}(x, y) \frac{\partial x}{\partial v}+f_{y}(x, y) \frac{\partial y}{\partial v} .
$$

The key thing to note is that $(u, v)=(0,0)$ means $(x, y)=(2,1)$, just by how we defined x, y. So:

$$
g_{u}(0,0)=(2)(1)+(5)(1)=7, \quad g_{v}(0,0)=(2)(0)+(5)(1)=5 .
$$

Question 3.

(a) The gradient is $\nabla f(x, y)=\left\langle\frac{y}{2 \sqrt{x y}}, \frac{x}{2 \sqrt{x y}}\right\rangle$.
(b) The tangent plane is

$$
z=4+(x-2)+\frac{1}{4}(y-8)
$$

(c) The vector from P to Q is $\langle 3,-4\rangle$. The unit vector in this direction is $\langle 3 / 5,-4 / 5\rangle$. Hence the directional derivative is

$$
\langle 1,1 / 4\rangle \cdot\langle 3 / 5,-4 / 5\rangle=2 / 5
$$

Question 4. The critical points are the solutions to the system of equations

$$
\begin{aligned}
& \cos x \sin y=0 \\
& \sin x \cos y=0 .
\end{aligned}
$$

From the first equation, we see that eithre $\cos x=0$ or $\sin y=0$. In the former case, the second equation implies that $\cos y=0$ (since $\sin x= \pm 1 \neq 0$). Likewise, in the latter case, the second equation implies that $\sin x=0$. So we have two cases.

For the case $\cos x=\cos y=0$, the points are

$$
(x, y)=(\pi / 2+m \pi, \pi / 2+n \pi)
$$

where $m, n \in \mathbb{Z}$. For the case $\sin x=\sin y=0$, the points are

$$
(x, y)=(m \pi, n \pi)
$$

where $m, n \in \mathbb{Z}$.
Next we have to classify the points. We have

$$
\left[\begin{array}{ll}
f_{x x} & f_{x y} \\
f_{x y} & f_{y y}
\end{array}\right]=\left[\begin{array}{cc}
-\sin x \sin y & \cos x \cos y \\
\cos x \cos y & -\sin x \sin y
\end{array}\right] .
$$

At the points $(x, y)=(\pi / 2+m \pi, \pi / 2+n \pi)$, we have $f_{x y}=0$. The quantities $f_{x x}$ and $f_{y y}$ happen to be equal; they are either 1 or -1 . The sign depends on m, n. If $m+n$ is even, then $f_{x x}=f_{y y}=-1$, so we have a local max. If $m+n$ is odd, then $f_{x x}=f_{y y}=1$ so we have a local min.

At the points $(x, y)=(m \pi, n \pi)$, we have $f_{x x}=f_{y y}=0$. The quantity $f_{x y}$ is 1 or -1 depending on m, n. But in either case, $D<0$, so we have a saddle point.
Question 5. The critical points solve the system

$$
\begin{aligned}
2 x-4 & =0 \\
-4 y^{3} & =0
\end{aligned}
$$

so $(2,0)$ is the only critical point. However, as you can check, $D=0$ at this point so the 2 nd derivative test is inconclusive. Well have to rely on the definitions of local extrema instead.

Note that $f_{x x}(2,0)=2>0$. So from the SVC 2nd derivative test, we know that along the x direction, the point $(2,0)$ is a local minimum. This does not imply that $(2,0)$ is a local minimum of $f(x, y)$, but it certainly eliminates the possibility that it's a local max.

However, if we consider the behavior in the y direction, i.e. $f(2, y)=-4-y^{4}$, we see that as y deviates from 0 the value of f decreases. So $(2,0)$ isn't a min.

From this, we conclude that $(2,0)$ is a saddle point.
Question 6. Let $g(x, y, z)=x+y+z$ so $g(x, y, z)=2 s$ is our constraint (recall that s is a constant). We can use $f(x, y, z)=$ $(s-x)(s-y)(s-z)$, since the inputs which maximize f would also maximize A. Lagrange tells us to solve the system

$$
\begin{aligned}
& -(s-y)(s-z)=\lambda \\
& -(s-x)(s-z)=\lambda \\
& -(s-x)(s-y)=\lambda
\end{aligned}
$$

i.e.

$$
(s-y)(s-z)=(s-x)(s-z)=(s-x)(s-y) .
$$

Note that if any one of x, y, z is equal to s, then $A=0$, which minimizes rather than maximizes the quantity of interest. So We can assume that $s-x, s-y, s-z$ are all nonzero. We conclude from the preceding equations that $x=y=z$, as desired. (They are all equal to $2 s / 3$.)
Question 7. We compile a list of candidates for extrema. The corners $(0,0),(\sqrt{3}, 0),(0, \sqrt{3})$ are candidates.
For the interior $x>0, y>0, x^{2}+y^{2}<3$ (strict inequalities) the candidates are critical points. The critical points of f lie along the x-axis, so there are none in the region of interest.

Next we have the three bounding edges. We see that the value of f is zero along all of the points along the x and y axes, so it remains to consider the circular part.

This can be handled with e.g. Lagrange multipliers:

$$
\begin{aligned}
x^{2}+y^{2} & =3 \\
y^{2} & =\lambda 2 x \\
2 x y & =\lambda 2 y .
\end{aligned}
$$

The last equation implies either $y=0$ or $x=\lambda$. But the arc in question has only points $y>0$, so we eliminate the first case. Hence $y \neq 0$ and $x=\lambda$, meaning $y^{2}=2 x^{2}$ from the second equation. Plugging into the first yields $3 x^{2}=3$, so $x= \pm 1$, but only $x=1$ is relevant. Thus $y=\sqrt{2}$.

Altogether, we conclude that the maxima of f are attained along the axes, where $f=0$, and the maximum of f is $f(1, \sqrt{2})=$ 2.

